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Abstract 

This study investigates the reliability of the smartwatch in 
assessing heart rate variability (HRV) under everyday 
conditions. Two protocols were compared: LTL (lying–
treadmill–lying) and STS (sitting–treadmill–sitting), both 
lasting 19 minutes and comprising three phases (rest, 
walking, and recovery). Seven participants were 
monitored using a smartwatch (fs-S = 100 Hz), and the 
analyzed parameters included Mean RR, SDNN, and 
RMSSD (time domain), as well as LF, HF, and LF/HF 
(frequency domain). The results showed significant 
differences in the time domain during phases 1 and 3, 
especially for Mean RR (phase 1: p = 0.007; phase 3: p = 
0.020) and SDNN (phase 1: p = 0.043). The frequency 
domain did not show significant differences between the 
protocols in any phase. Data collection in a natural context 
allows for more realistic inferences about autonomic 
physiology, highlighting the potential of smartwatches in 
remote telemonitoring.  
 
1. Introduction 

Wearable devices operate through a sensor equipped 
with a photoplethysmography (PPG) system, which uses a 
non-invasive optical technique to analyze blood pulsation 
in peripheral regions of the body and, from that, provides 
physiological monitoring data to the user. Although this 
technique has great potential and various applications, its 
physiological origin is still under investigation. However, 
with advancements in computational modeling and 
imaging technologies, it has become possible to better 
understand the interaction between light and tissue (skin) 
[1]. 

Due to their wide range of functions, ease of portability, 
and usability, the use of wearable devices has been 
growing and gaining popularity in recent years. Among the 
physiological variables that can be monitored through a 

smartwatch is heart rate variability (HRV), which is an 
important marker of the autonomic modulation of the 
heart. HRV reflects the balance between the 
parasympathetic and sympathetic systems and can be 
associated with several physiological conditions, such as 
stress, fatigue, physical performance, cardiovascular risk, 
and post-exercise recovery [2]. Therefore, its measurement 
must be accurate, as it is essential for clinical 
interpretation. In addition to HRV, wearable devices can 
also assess blood pressure, oxygen saturation, and monitor 
body position and speed in real time through embedded 
gyroscopes and accelerometers [3]. 

However, when using photoplethysmography, it must 
be considered that it is highly sensitive to movement, 
making it prone to motion artifacts [4]. 

Given its broad utility, this technology has increasingly 
been incorporated into users’ daily routines. Nonetheless, 
it still presents challenges, such as limited storage capacity 
for extended use, the need for a secondary device to 
analyze signals/data collected during daily activity, battery 
life that may not support full-day or overnight recording, 
water resistance requirements for specific environments, as 
well as issues related to motion artifacts, lighting, and skin 
pigmentation [5]. 

Despite these challenges, measurements obtained from 
wearable devices often exhibit variability in both reliability 
and accuracy when compared with data acquired from 
gold-standard instruments such as the electrocardiogram 
(ECG). ECG enables precise detection of RR intervals, 
which serve as the foundation for calculating key HRV 
indices across both the time and frequency domains. [1]. 

Therefore, it is essential to develop specific protocols 
tailored to the monitoring of daily activities. Considering 
the integration of accelerometer and gyroscope 
technologies, this study aimed to evaluate the reliability of 
HRV data obtained exclusively from a smartwatch during 
real-life conditions using two distinct protocols, and to 
determine whether these measurements are comparable in 
accuracy to those derived from an electrocardiogram 
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(ECG). 
 

1.1. Hypothesis and objective 

We hypothesized that HRV measurements obtained 
through smartwatch show a high correlation when 
compared to ECG measurements under resting conditions 
accuracy decreases during activities greater body 
movement due to motion artifacts. The objective is to 
expand the application of the smartwatch to daily activities 
in uncontrolled environments, i.e., during the participant’s 
routine. 

 
2. Materials and methods 

2.1. Materials 

The participants in this study were recruited voluntarily. 
The tests were conducted at the Polyclinic of the 
University of Mogi das Cruzes (UMC), SP, Brazil. 

2.2. Sample 

The study sample comprised 7 participants (4 females 
and 3 males), aged between 23 and 46 years, mean age 
(34.1 ± 10.1) years old. Participants had no comorbidities 
or physical or mental limitations. The participants in this 
study were recruited voluntarily (CEP CAAE: 
64561022.7.0000.5497. 3) 

2.3. Protocol 

Participants completed two experimental protocols 
using a smartwatch operating at a sampling frequency of 
100 Hz, each composed of three consecutive phases. In 
the LTL protocol, participants remained lying down for 6 
minutes (Phase 1), walked on a treadmill at 3.5 km/h for 6 
minutes (Phase 2), and then lay down again for 7 minutes 
(Phase 3). In the STS protocol, the same structure was 
followed, but participants began sitting, performed the 
same 6-minute treadmill walk, and ended sitting again for 
the recovery period. Each protocol lasted 19 minutes per 
participant. 

Phase 1 represented a resting condition in a quiet 
environment, allowing the establishment of a baseline 
HRV measurement under autonomic stability, with 
minimal body movement. 

Phase 2 consisted of continuous treadmill walking, 
considered a light physical activity sufficient to elicit 
physiological changes in HRV. This phase aimed to test 
the smartwatch’s signal reliability under motion, one of the 
main limitations of phase PPG-based devices. 

Phase 3 served as the recovery period, assessing HRV 
behavior after physical exertion and verifying the 
smartwatch’s ability to maintain signal consistency 

comparable to the resting condition. 
 

2.4.  Data processing 

The data were collected and exported in .csv format for 
subsequent processing. Signal preprocessing was 
performed using PyBios software, which allowed for 
artifact filtering and generation of clean data samples [6]. 
The resulting dataset was then segmented by phase to 
enable phase-specific HRV analysis [7]. 
Data from both protocols LTL and STS were organized in 
a spreadsheet and categorized by HRV parameter and 
experimental phase. Statistical analyses were conducted 
using GraphPad Prism v10.4, applying the Mann–Whitney 
U-test to assess differences between protocols. 

3. Results 

The results were analyzed phase by phase for each 
parameter. 
 
3.1. Phase 1: Resting condition 

Table 1 summarizes the HRV results obtained during 
the resting phase. Significant differences were observed in 
the time-domain parameters. 

Mean RR was significantly higher in the LTL protocol 
(0.869 ± 0.195 ms) compared with STS (0.817 ± 0.154 ms; 
p= 0.007), indicating greater parasympathetic activity in 
the lying position. Conversely, SDNN was lower in LTL 
(0.037 ± 0.014 ms) than in STS (0.049 ± 0.021 ms; p = 
0.043), suggesting higher overall variability while sitting. 
RMSSD values were nearly identical between protocols 
(LTL: 0.009 ± 0.002 ms; STS: 0.009 ± 0.003 ms; p= 
0.662). No significant differences were detected in the 
frequency-domain indices, including LF (p= 0.560), HF 
(p= 0.560), and LF/HF ratio (p= 0.421). 

 
Table 1: Mean Values and Standard Deviations Between 
LTL and STS Protocols for HRV Parameters (*) p < 0.05. 

Parameter 
LTL 

(mean ± SD) 
STS 

(mean ± SD) p-value 

Time domain 
Mean RR 
(ms) 0.86 ± 0.19 0.81 ± 0.15 0.01* 

SDNN (ms) 0.03 ± 0.01 0.04 ± 0.02 0.04* 
RMSSD 
(ms) 0.01 ± 0.00 0.01 ± 0.00 0.66 

  Frequency domain 
LF (norm) 85.78 ± 5.77 87.75 ± 6.23 0.56 
HF (norm) 14.21 ± 5.77 12.24 ± 6.23 0.56 
LF/HF 7.28 ± 3.76 9.24 ± 5.27 0.42 
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3.2. Phase 2: Walking on treadmill 

In Table 2, representing the walking phase, none of the 
parameters showed statistically significant differences 
between protocols. Mean RR (LTL: 0.561 ± 0.081 ms; 
STS: 0.570 ± 0.102 ms; p= 0.637), SDNN (LTL: 0.033 ± 
0.021 ms; STS: 0.024 ± 0.009 ms; p= 0.367), and RMSSD 
(LTL: 0.002 ± 0.008 ms; STS: 0.003 ± 0.001 ms; p= 0.633) 
remained comparable across conditions. Similarly, LF, 
HF, and LF/HF ratio did not differ significantly (LF: p= 
0.411; HF: p= 0.411; LF/HF: p= 0.976). 

These results indicate that the body posture preceding 
walking (lying or sitting) did not affect autonomic 
response during light exercise, as reflected by similar HRV 
patterns between the two protocols. 

Table 2: Mean Values and Standard Deviations Between 
LTL and STS Protocols for HRV Parameters. 

Parameter 
LTL 

(mean ± SD) 
STS 

(mean ± SD) p-value 

Time domain 
Mean RR 
(ms) 0.56 ± 0.08 0.57 ± 0.10 0.64 

SDNN (ms) 0.03 ± 0.02 0.02 ± 0.01 0.38 
RMSSD 
(ms) 0.00 ± 0.01 0.00 ± 0.00 0.63 

  Frequency domain 
LF (norm) 87.06 ± 6.14 82.93 ± 8.60 0.41 
HF (norm) 12.93 ± 6.14 17.06 ± 8.60 0.41 
LF/HF 8.00 ± 3.33 8.13 ± 9.28 0.98 

 
3.3. Phase 3: Recovery phase 

Table 3 summarizes the results for the recovery phase.  
 

Table 3: Mean Values and Standard Deviations Between 
LTL and STS Protocols for HRV Parameters (*) p < 0.05. 

Parameter 
LTL 

(mean ± SD) 
STS 

(mean ± SD) p-value 

Time domain 
Mean RR 
(ms) 0.85 ± 0.14 0.80 ± 0.15 0.02* 

SDNN (ms) 0.05 ± 0.03 0.05 ± 0.03 0.31 
RMSSD 
(ms) 0.01 ± 0.00 0.01 ± 0.00 0.76 

  Frequency domain 
LF (norm) 85.26 ± 7.59 89.93 ± 2.11 0.18 
HF (norm) 14.73 ± 7.59 10.06 ± 2.11 0.18 
LF/HF 7.88 ± 5.10 9.29 ± 2.01 0.54 

 
A significant difference was observed in Mean RR, 

with higher values in LTL (0.854 ± 0.137 ms) compared to 
STS (0.797 ± 0.148 ms; p= 0.020), suggesting a more 
effective reactivation of parasympathetic activity in the 
lying condition. SDNN was slightly higher in LTL (0.059 
± 0.033 ms) than in STS (0.046 ± 0.027 ms; p= 0.311), 
whereas RMSSD remained similar between protocols 
(LTL: 0.008 ± 0.002 ms; STS: 0.008 ± 0.003 ms; p= 
0.756). 

In the frequency domain, LF, HF, and LF/HF ratio did 
not exhibit significant differences between conditions, 
showing only minor variations. 

4. Discussion 

The results presented in this study demonstrate that the 
LTL protocol elicited a different autonomic response 
compared to the STS protocol, particularly in the phases 
where participants remained at rest namely, Phase 1 and 
Phase 3 in the time domain. The analysis of the Mean RR, 
which can be considered a marker of parasympathetic 
activity, showed significantly higher values in the LTL 
protocol during Phase 1 (p= 0.007) and Phase 3 (p= 0.020). 
This suggests a vagal predominance when the participant 
is lying down. These results are consistent with previous 
studies comparing smartwatch and ECG measurements, 
which demonstrate strong correlation at rest and partial 
agreement during mild movements [1,2]. 

Although direct comparison with ECG was not 
performed in this study, the observed reliability pattern 
follows that reported in the literature, indicating that under 
low-motion conditions, smartwatch derived HRV indices 
are comparable to those from ECG. 

Although SDNN presented higher values in the STS 
protocol during Phase 1 (p= 0.043), this pattern did not 
persist in the other phases. Greater variability while sitting 
may represent postural parasympathetic activity. The 
RMSSD parameter remained low in both protocols, which 
may be related to the short duration of data collection 
possibly insufficient to capture this metric or due to the 
limited sensitivity of the method when applied to a 
relatively simple protocol. 

In Phase 2, during treadmill walking at 3.5 km/h, both 
the time and frequency domain parameters showed similar 
values between protocols. This indicates that the physical 
effort involved was mild and resulted in a standardized 
autonomic response, regardless of the participant’s prior 
posture lying or sitting. Time domain values between LTL 
and STS ranged from (p= 0.367 to 0.637), and in the 
frequency domain, values ranged from (p= 0.411 to 0.976). 

In the frequency domain, the LF, HF, and LF/HF 
parameters did not exhibit significant differences, 
suggesting that postural changes between LTL and STS 
had a stronger effect on time domain parameters, which 
reflect overall autonomic nervous system activity both 
sympathetic and parasympathetic. 

Unlike previous studies, in which data collection was 
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conducted in a controlled environment that may have 
induced a certain degree of participant stress, the use of the 
smartwatch with a 100 Hz sampling rate in an 
uncontrolled, real-life context demonstrated that this tool 
provides highly reliable data under such conditions. 

In the present study, we were able to evaluate the 
effectiveness of both protocols and concluded that the LTL 
protocol was more effective, as it elicited a greater 
parasympathetic response during the resting period. This 
finding may be particularly relevant for studies focused on 
post-exercise recovery or activities aimed at assessing 
autonomic balance. 

This study reinforces the strong potential of using the 
smartwatch as a tool for remote telemonitoring, allowing 
for continuous and non-invasive data collection across 
different postural positions, and increasing the ability to 
assess physiological data under various conditions[8], [9]. 
The applicability of the smartwatch can be extended to 
athletes, older adults, individuals with chronic diseases, 
and those undergoing rehabilitation. 

Furthermore, the similarity of HRV parameters between 
sitting and lying positions during recovery suggests that 
body posture has a secondary influence on autonomic 
regulation once heart rate has stabilized. A key implication 
of this finding is that smartwatches can be used in 
longitudinal monitoring or home-based follow-ups, as they 
capture reliable HRV patterns even in semi-controlled 
environments. However, motion artifacts remain a limiting 
factor for accurate signal acquisition during more intense 
activities. 

In future work, we aim to explore protocols involving 
the Valsalva maneuver a physiological test that enables the 
assessment of the normal functioning and responsiveness 
of the autonomic nervous system, particularly 
parasympathetic and sympathetic activity. The protocol 
consists of a forced expiration against a closed airway, 
typically lasting around 15 to 20 seconds, which induces 
controlled changes in intrathoracic pressure and heart rate 
[10]. 

Future studies should include simultaneous ECG 
recordings to establish correction factors and increase the 
reliability of smartwatch data for clinical diagnostics. 
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